**ISSN NO: 2395-339X** 

## SPEECH AND LANGUAGE PROFILING AND EFFECT OF VIDEO FEEDBACK INTERVENTION ON 4 YEAR OLD CHILD WITH SEGAWA SYNDROME

Radhika Mohan, Athira P Gopi, Gopika B Kumar, Gomathi Priya Sen\* **ABSTRACT** 

An irregular gait (clumsy or uncoordinated walking) and dystonia (uncontrollable shaking) are two of the characteristics of Segawa syndrome, which is a rare genetic condition. Generally, it is possible that the symptoms of Segawa syndrome are remarkable with diurnal fluctuations, particularly in adolescents and adults. Well-known clinical illustrations of dopaminergic deficits seen in Segawa syndrome affecting speech and language control in patients range from a fundamental inability to control motor aspects of speech production will result in moderate to profound cognitive language impairments, which in turn formulate syntactic complexity with phonological processing, comprehension. VFI is a technique aimed at fostering positive parenting that has been shown to be beneficial for child development and parent-child interaction in a variety of settings, including at-risk and clinical populations, in varied ways. The concept of promoting more cost effective assistance for people with special needs entrusts the major responsibility for therapeutic administration to the parents, in the home environment, in contrast to the typical service delivery paradigm. The aim of the present study is to profile about the speech and language characteristics of a 4-year-old child with Segawa Syndrome and the effect of videofeedback intervention given, in improving parent-child interaction, after six months of treatment.

Key-words-Syndrome, Intervention, Segawa, Video-Feedback

### INTRODUCTION

Segawa et al. initially described dopa-responsive dystonia (DRD) in 1976. It is often referred to as 'hereditary progressive dystonia with diurnal changes' or 'Segawa's syndrome'. It is not uncommon for this uncommon disorder to be misdiagnosed as hysteria, hereditary spastic paraparesis, or cerebral palsy due to a lack of awareness. Segawa syndrome is a rare genetic illness marked by a clumsy or uncoordinated method of walking (abnormal gait), as well as dystonia (uncontrollable shaking). Generally speaking, dystonia is a word that refers to a collection of muscle disorders that are characterized by involuntary muscle contractions that cause the body to move and position itself in unnatural, sometimes painful, ways (postures). Dystonia in Segawa syndrome mainly affects the legs, however in some cases, dystonia in the arms may be the initial sign of the disorder. It is possible that the symptoms of Segawa syndrome, particularly in adolescents and adults, will become noticeably worse or more visible in the afternoon and evening hours as opposed to the morning hours on occasion (marked diurnal fluctuation).

<sup>\*</sup>Radhika Mohan1, Athira P Gopi2, 1&2 Assistant Professor, Department of Audiology and Speech Language Pathology Aarupadai Veedu Medical college, & Hospital Campus, Vinayaka Mission university, Puducherry- 607403

<sup>\*</sup>Gopika B Kumar, Lecturer, Department of Audiology and Speech Language Pathology, Aarupadai Veedu Medical college & Hospital Campus, Vinayaka Mission university,

<sup>\*</sup>Gomathi Priya Sen, Intern, Department of Audiology and Speech Language Pathology, Aarupadai Veedu Medical college & Hospital Campus, Vinayaka Mission university,

ISSN NO: 2395-339X

When levodopa is administered to children with Segawa syndrome, they often experience a significant and long-lasting improvement. It is an amino acid that can be turned into dopamine, a brain molecule that acts as a neurotransmitter, through the process of oxidation. Children with Segawa syndrome have low levels of dopamine in their bodies. Mutations in the GCH-1 gene are the root cause of the illness. The GCH-1 gene mutation is passed down through families in an autosomal dominant manner.

In the speech system, recent studies have shown that dopaminergic transmission might influence synchronic linguistics speech process (Tettamanti et al., 2005), verbal long-term memory and word generation (Cervenka et al., 2008). On the opposite hand, the role of dopaminergic neuromodulation in traditional speech control remains unknown.

Well-known clinical illustrations of dopaminergic deficits seen in Segawa syndrome affecting speech and language control in patients range from a fundamental inability to control motor aspects of speech production (e.g., monotone, hypotonic speech with reduced loudness and pitch, decreased accuracy of articulation; moderate to profound cognitive language impairments (e.g., difficulties with phonological processing, syntactic complexity and language comprehension.(Heinz, 1998; Kataoka and Ueno, 2010; Ludlow, 2008; Thompson., 2009).

VFI is a technique aimed at fostering positive parenting that has been shown to be beneficial for child development and parent—child interaction in a variety of settings, including at-risk and clinical populations, in varied ways. VFI is increasingly being used with parents of children with neurodevelopmental impairments (ND; for example, cerebral palsy, sensory and/or psychomotor delay, and genetic abnormalities)Provenzi et al (2020).

The present study focuses on describing the speech and language characteristics of a four year old child with Segawa Syndrome and the effect of video-feedback intervention given, in improving parent-child interaction.

### REVIEW OF LITERATURE

While significant progress has been made in the understanding of mother-child interactions (Bornstein, 1989; Cyr, Dubois-Comtois, & Moss, 2008; Gartstein, Crawford, & Robertson, 2008; Landry, Smith, Swank, & Miller-Loncar, 2000), In the context of families parenting children with particular developmental disorders, relatively little of this information has been developed. However, in recent years, parenting behaviour in the context of a developmental disability has gained attention (e.g., Ruble, McDuffie, King, & Lorenz, 2008; Rutgers, van IJzendoorn, Bakermans-Kraneburg, et al., 2007; Warren & Brady, 2007). As a crucial variable in the study of unexceptionally developing newborns, maternal responsiveness or sensitivity has recently inspired attention in the research of children with syndromes and disordersof developmental delay (Slonims, Cox & McConachie, 2006; Venuti, Giusti, & Bornstein, 2008; Warren & Brady, 2007). At the very least, maternal responsiveness has the potential to influence language development, which is critical for all children but especially those with developmental disabilities or syndromes, such as autism, that can delay or prevent language development (Baker, Messinger, Lyons & Grantz, 2010.)

The inheritance of rare single gene illnesses is typically characterized by Mendelian patterns of inheritance. Autosomal dominant diseases, autosomal recessive conditions, and X-linked disorders are among the many types of genetic abnormalities. Hannah Blencowe et al., (2018)developed a method for estimating the burden of these disorders in children up to the

ISSN NO: 2395-339X

age of five in areas with limited empirical data as non-communicable diseases. This approach uses population-level demographic data, combined with assumptions based on empirical data from settings with data available, to provide population-level estimates which programme policy-makers or the professionals, when planning services can use.

**AIM** - The aim of the present study is to profile about the speech and language characteristics of a 4 year old child with Segawa Syndrome and the effect of video-feedback intervention given, in improving parent-child interaction

### **METHODOLOGY-**

The initial evaluation in the department of speech and language diagnostics was profiling the speech and language procurement of the child using proforma for childhood language disorders and standardized test materials such as REELS-3,3- Dimensional – Language acquisition test,

Reynell's attention scale and Westby play scale.

The child was enrolled for video-feedback intervention, with specific interest in meeting parent child interaction atreceptive and expressive language, speech sound production and social communication skills. Schedule of regular sessions and time bound goals were set to score the prognosispost 6 months. Questionnairemodified from the study-Efficacy of Parent Child Interaction and Parental Self Esteem with a Video Feedback Intervention in Children with Autism Spectrum Disorder(Mohan, Kumar and Mohan, 2020) was administered to check improvement and parental satisfaction and standardized diagnostic materials were used to score pre and post therapy administration.

Parents were asked to record the administration of the techniques within the natural environment of the child. The therapist acted as the guider and the parents were asked to analyze and reflect on video-clips of their own interactions, with the child.

Questionnaire was administered post six months. Parents were asked to rate each question between 1 to 5 on a visual analog scale, where 1 was strongly disagree and 5 was strongly agree.

### **RESULTS AND DISCUSSION**

The child was referred from XXX hospital for speech and language intervention followed by the reported delay in language acquisition at the age of 1.9 years. Her last evaluation in this hospital was at the age of 10 months for genetic study revealing the presence of Segawa and the child was under regular medication of levodopa and carbidopa with increase in dosage on regular visit for the medical conditions and sleeping disturbances. Her parents reported that their main concern that day is regarding her communication skills.

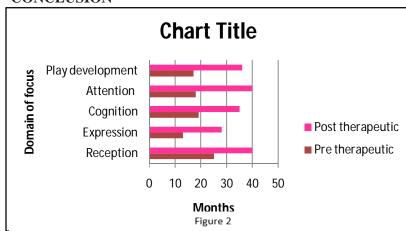
ISSN NO: 2395-339X

She is the first child of consanguineoussecond-degree parentage with significant natalhistory such as oligohydramnious, preterm caesarian delivery with significantly low birth weight of 1.9kg and delayed birth cry. She was also treated for neonatal hypoxia under specialized ICU for about 2 days soon after birth. Detailed profiling of the child eliminated all other causes for possible congenital abnormalities or impairments except the genetic disturbance occurred. She presented with a significant delay in expressive language and cognition - delay of 1 year, and barely noticeable delay of 3-5 months in receptive language. Considering diagnostic criteria of overall noted delay in motor and speech milestones with significant medical and natal history, dystonia of the foot, with normal play scales and attention with emerging pragmatic skills she was along with the presence of professionally diagnosed as an individual with global developmental delay secondary to Segawa syndrome. Further the client wasrecommended for a multi-disciplinary management of Speech and language therapy, Physiotherapy, along with ongoing medications focusing in improving overall quality of life. The figure 1 shows the pre and post therapeutic scores obtained on standardized language

tests and Figure 2 shows graphical representation of prognosis.

The child was enrolled for video feedback intervention from home aiming improvement in parent child interaction. The preliminary goal for therapy was set to improve the functional communication of the child, with the therapist explaining about the speech and language stimulation techniques and its demonstration.

Parents reported increased rating for question 1, which indicated that there was increased vocabulary level, after video feed-back, Question 2 which reported that there was significant improvement in social interaction, question 3 which indicated reduction in parental anxiety regarding communication skill, Question No:4, indicating parents' ability to encourage language development through video feedback and parent child interaction, Question No: 6, which indicated the improvement in parental self- esteem through video feedback and parent child


| Pretherapy at 3.5 years of age                    | Post therapy at 4 years of                           |
|---------------------------------------------------|------------------------------------------------------|
| 3DLAT                                             | Extended REELS                                       |
| Language comprehension-Group VI,24-26 months      | Receptive language Age- 36-42 r                      |
| (Understands whose and what happened,             | (3-3.5years)                                         |
| where questions with spatial relationships and    | (Comprehends numerical marks                         |
| simple how questions evaluating quality, but      | and first-order embedded sentence                    |
| do not comprehend how questing evaluating         |                                                      |
| cause)                                            |                                                      |
| Language Expression-Group II, 12-14 months        | Expressive language age- 27-30 r                     |
| (Begun to express needs and naming 4-5            | Can express self by using                            |
| lexical items, but not started saying words to    | spontaneous speech, express pr                       |
| indicate actions/event as well as repeating after | correctly, and can count up to ten                   |
| the other)                                        |                                                      |
| G 11 G W110.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  | Cognition (3D LAT): Group                            |
| Cognition: Group IV, 18-20 months (child has      | months 3(presents with concept                       |
| started to use actual words, memorizes past       | though work in the family,                           |
| events and replies to questions)                  | correction while talking, however with future plans) |
| Reynell's Attention Levels and Strategies         | ,                                                    |
| Stage 2; 1-2 years (maintains single channeled    | Stage 4; 3-4 years (Maintains sing                   |
| attention and ignore external stimulus)           | attention and able to shift between                  |
|                                                   |                                                      |
| Developmental Play scale                          |                                                      |
| Play-Symbolic level I; 17 to 19 months (Has       |                                                      |
| some concept on tool use, hidden objects and      | Play-Symbolic level V; 3 years (d                    |
| life like props at everyday familiar situations   | play with modification, involvin                     |
| with coherence at short isolated schemas even     | role play and associative play)                      |
| with self-representation)                         |                                                      |
| Communication- Phase 1; pre-symbolic level        | Language-Symbolic Level III;2                        |
| II;13-17 months (Uses context related single      | gives comments on self-activity                      |
| words and exhibit requesting, protesting,         | simple sentences containing p                        |
| labeling, greeting and commanding)                | emerging morphological markers                       |

### ISSN NO: 2395-339X

interaction. Question 5 specifically addresses the effect of the feed-back interaction from father's perspective.

Father reported that the intervention increased their knowledge of their child's ideas and feelings, as well as their communication and relationship with their infant. The reply from fathers was overwhelmingly positive. The ability to conduct sessions at home (or at dads' places of work) and the ability to schedule sessions according to father's schedules were highlighted as critical to successful delivery. The finding is in agreement with the study done by Lawrence, Davies and Ramchandani (2012) which suggested that father's involvement in interventions enhances its effectiveness.

### **CONCLUSION**



Parent child interaction is the soul of communication that nourish the innate ability verbal mode of message transmission for a normal hearing child special with needs.Governments promoting a more costeffective type of speech and language assistance that is delivered in the

home. This concept entrusts the major responsibility for therapeutic administration to the parents, in the home environment, in contrast to the more typical service delivery paradigm in which the speech-language pathologist is the primary agent of change. That is, the parent-centered with professional support (which is also considered the best practice) is now slowly replacing the therapist-centered model.

### **FUTURE WORK & SUGGESTIONS-**

The present study is a single-case study. The effect of Video-feedback intervention on improving communication skills and improving parent-child interaction can be assessed, on rarely occurring syndromes.

### **REFERENCES:**

- 1. Baker, J. K., Messinger, D. S., Lyons, K. K., & Grantz, C. J. (2010b). A Pilot Study of Maternal Sensitivity in the Context of Emergent Autism. *Journal of Autism and Developmental Disorders*, 40(8), 988–999. https://doi.org/10.1007/s10803-010-0948-4
- 2. Blencowe, H., Moorthie, S., Petrou, M., Hamamy, H., Povey, S., Bittles, A., Gibbons, S., Darlison, M., & Modell, B. (2018). Rare single gene disorders: estimating baseline prevalence and outcomes worldwide. *Journal of Community Genetics*, *9*(4), 397–406. https://doi.org/10.1007/s12687-018-0376-2
- 3. Cervenka, S., Bäckman, L., Cselényi, Z., Halldin, C., &Farde, L. (2008). Associations between dopamine D2-receptor binding and cognitive performance indicate functional

### ISSN NO: 2395-339X

- compartmentalization of the human striatum. *NeuroImage*, 40(3), 1287–1295. <a href="https://doi.org/10.1016/j.neuroimage.2007.12.063">https://doi.org/10.1016/j.neuroimage.2007.12.063</a>
- 4. Cyr, C., Dubois-Comtois, K., & Moss, E. (2008). Mother-child conversations and the attachment of children in the pre-school period. *CANADIAN JOURNAL OF BEHAVIOURAL SCIENCE-REVUE CANADIENNE DES SCIENCES DU COMPORTEMENT*, 40(3), 140-152.
- 5. Gartstein, M. A., Crawford, J., & Robertson, C. D. (2008). Early markers of language and attention: Mutual contributions and the impact of parent–infant interactions. *Child Psychiatry and Human Development*, 39(1), 9-26.
- 6. Heinz, A., Knable, M. B., Wolf, S. S., Jones, D. W., Gorey, J. G., Hyde, T. M., & Weinberger, D. R. (1998). Tourette's syndrome. *Neurology*, *51*(4), 1069–1074. https://doi.org/10.1212/wnl.51.4.1069
- 7. Kataoka, H., & Ueno, S. (2010). Compulsive singing associated with a dopamine agonist in Parkinson disease. *Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology*, 23(2), 140–141. https://doi.org/10.1097/WNN.0b013e3181c12af2
- 8. Landry, S. H., Smith, K. E., Swank, P. R., & Miller-Loncar, C. L. (2000). Early maternal and child influences on children's later independent cognitive and social functioning. *Child development*, 71(2), 358–375. <a href="https://doi.org/10.1111/1467-8624.00150">https://doi.org/10.1111/1467-8624.00150</a>
- 9. Lawrence, P. J., Davies, B., & Ramchandani, P. G. (2012). Using video feedback to improve early father–infant interaction: A pilot study. *Clinical Child Psychology and Psychiatry*, 18(1), 61–71. https://doi.org/10.1177/1359104512437210
- Ludlow, C. L., Adler, C. H., Berke, G. S., Bielamowicz, S. A., Blitzer, A., Bressman, S. B., Hallett, M., Jinnah, H. A., Juergens, U., Martin, S. B., Perlmutter, J. S., Sapienza, C., Singleton, A., Tanner, C. M., & Woodson, G. E. (2008). Research priorities in spasmodic dysphonia. *Otolaryngology Head and Neck Surgery*, 139(4), 495-505.e1. https://doi.org/10.1016/j.otohns.2008.05.624
- 11. Provenzi, L., Giusti, L., Caglia, M., Rosa, E., Mascheroni, E., &Montirosso, R. (2020). Evidence and Open Questions for the Use of Video-Feedback Interventions with Parents of Children With Neurodevelopmental Disabilities. *Frontiers in Psychology*, 11. https://doi.org/10.3389/fpsyg.2020.01374
- 12. Radhika Mohan, Gopika B Kumar, Ramanakumar Mohan (2020) "Efficacy of Parent Child Interaction and Parental Self Esteem with a Video Feedback Intervention in Children with Autism Spectrum Disorder", *International Journal of Emerging Technologies and Innovative Research* (www.jetir.org | UGC and issn Approved), ISSN:2349-5162, Vol.7, Issue 5, page no. pp238-243, May-2020
- 13. Ruble, L., McDuffie, A., King, A. S., & Lorenz, D. (2008). Caregiver Responsiveness and Social Interaction Behaviors of Young Children with Autism. *Topics in Early Childhood Special Education*, 28(3), 158–170. https://doi.org/10.1177/0271121408323009
- 14. Rutgers, A. H., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Swinkels, S. H. N., van Daalen, E., Dietz, C., Naber, F. B. A., Buitelaar, J. K., & van Engeland, H. (2007). Autism, Attachment and Parenting: A Comparison of Children with Autism Spectrum

**ISSN NO: 2395-339X** 

Disorder, Mental Retardation, Language Disorder, and Non-clinical Children. *Journal of Abnormal Child Psychology*, 35(5), 859–870. https://doi.org/10.1007/s10802-007-9139-y

- Sensitive Periods in Developments: Interdisciplinary Perspectives. Edited by M. H. Bornstein. (Pp. 290;illustrated;£19.95.) Lawrence Erlbaum Publishers: Hillsdale, NJ.1987.(1993). Psychological Medicine, 23(1),259. <a href="https://doi.org/10.1017/s0033291700039234">https://doi.org/10.1017/s0033291700039234</a>
- 16. Slonims, V., & McConachie, H. (2006). Analysis of Mother–Infant Interaction in Infants With Down Syndrome and Typically Developing Infants. *American Journal on Mental Retardation*, 111(4), 273.
- 17. Tettamanti, M., Buccino, G., Saccuman, M. C., Gallese, V., Danna, M., Scifo, P., Fazio, F., Rizzolatti, G., Cappa, S. F., &Perani, D. (2005). Listening to action-related sentences activates fronto-parietal motor circuits. *Journal of cognitive neuroscience*, *17*(2), 273–281. <a href="https://doi.org/10.1162/0898929053124965">https://doi.org/10.1162/0898929053124965</a>
- 18. Thompson, J. L., Urban, N., & Abi-Dargham, A. (2009). How have developments in molecular imaging techniques furthered schizophrenia research? *Imaging in Medicine*, *1*(2), 135–153. https://doi.org/10.2217/iim.09.22
- 19. Venuti, P., de Falco, S., Giusti, Z., & Bornstein, M. H. (2008). Play and emotional availability in young children with Down syndrome. *Infant Mental Health Journal*, 29(2), 133–152. https://doi.org/10.1002/imhj.20168
- 20. Warren, S. F., & Brady, N. C. (2007). The role of maternal responsivity in the development of children with intellectual disabilities. *Mental Retardation and Developmental Disabilities Research Reviews*, 13(4), 330–338. <a href="https://doi.org/10.1002/mrdd.20177">https://doi.org/10.1002/mrdd.20177</a>

### **APPENDIX**

On a scale from 1 -5 please rate the following statement about the efficacy of parent child interaction video feedback and self esteem.

- 1= Strongly disagree
- 2 = Disagree
- 3 = Neutral
- 4 = Agree
- 5 = Strongly agree
- 1.வீ டியோகருத்துதலையீட்டில்கலந்துகொண்டபிறகு என்னுடையகுழந்தையின்சொல்வளம்அதிகரித்துள்ளது.
- 2.வீ டியோகருத்துதலையீட்டில்பங்கேற்றதற்குபிறகு என்னுடையகுழந்தையின்சமூகத்திறன்கள்அதிகரித்துள்ளது.
- 3.வீ டியோகருத்துதலையீட்டில்பங்கேற்றதற்குபிறகு எனதுகுழந்தையின்மொழிவளர்ச்சிகுறித்தகவலைஎனக்குகுறைந் துள்ளது.

**ISSN NO: 2395-339X** 

4.வீ டியோகருத்துதலையீட்டில்பங்கேற்றதற்குபிறகு என்னுடையகுழந்தையின்மொழிவளர்ச்சியைஊக்குவிக்கும்திறன் எனக்குஅதிகரித்துள்ளது.

5.வீ டியோகருத்துதலையீட்டின்பங்கேற்றத்திற்குப்பிறகுமனம்அழுத் தம்குறைவதோடுமட்டுமல்லாமல்தந்தைக்கும்குழந்தைக்கும்இடை யிலானதொடர்பும்அதிகரித்துஉள்ளதா

6.நான்,வீ டியோகருத்துதலையீட்டில்பங்கேற்றதால் என்னுடையசுய திறனைமேம்படுத்தமுடிந்தது.